
JOURNAL OF COhWUTATIONAL PHYSICS 24, 339-347 (1977) 

A Descent Approach to a Class of Inverse Problems 

P. S. KRISHNAPRA~AD AND RICHARD BAR&AT* 

Division of Engineering and Applied Physics, 
Harvard University, Cambridge, Massachusetts 02138 

Received April 19, 1976; revised September 21, 1976 

In this paper, we consider the solution of a class of ill-posed inverse problems occurring 
in physics and engineering that require the solution to be nonnegative. An iterative al- 
gorithm is presented in which this constraint is taken into consideration directly. The 
algorithm is applied to a typical problem. 

1. INTRODUCTION 

The inverse problems that we study in this paper are given in terms of the operator 
equation 

Af =g, J-G& gE:G (11 

with the operator A mapping from some complete metric space F onto a complete 
metric space G. We state the inverse problem as: Given g E G and A, determine fe F 
which satisfies Eq. (1). 

It is now reasonably well known that inverse problems are generally numerically 
unstable due to the ill-posed nature of most inversion problems [I]. Partial stabili- 
zation is obtained by imposing constraints, either implicit or explicit, thereby forcing 
the inverse operator A-l to be better behaved. 

In many of the inverse problems encountered in the sciences and engineering, the 
unknown function f must be nonnegative. Typical examples are: determination of the 
refractive index structure constant from measurements of the log-amplitude covariance 
[2], determination of probability density function of aerosol size from spectral 
attenuation measurements [3], object restoration in incoherent illumination [4, 51, 
determination of the spectral density function from a finite section of the covariance 
function [6]. 

The purpose of the present paper is the construction of an algorithm for inverting 
Eq. (1) subject to the constraint thatfbe nonnegative even when g is taken to be noisy. 

Our approach is via the quasi-solution idea of Ivanov [7]. A quasi-solution p of 
the inverse problem is defined by the relation 

.f = arg Wn,iAAf - g I I”> 
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where M is a constraint set based on prior information about the solution. By this 
we mean that p is the solution to the minimization problem in parentheses. The 
problem of finding a quasi-solution is one of nonlinear programming [8]. The iterative 
algorithm used in this paper is a modification of the steepest-descent technique and 
takes into account the nonnegativity constraint. The algorithm picks the optimal 
direction in which to make a search for the best estimate. In the absence of constraints, 
the search involves solving a scalar minimization. This is the step involving cl in 
Eq. (18). However, because of the nonnegativity constraint involved the search should 
be restricted to the feasible set. This is achieved in Eq. (21). 

The nonlinear programming approach of this paper can be extended, by the use 
of Lagrange multipliers, to deal with constraints of the equality type. Such constraints 
arise, for example, in problems involving a probability density function; here the 
equality constraint is thatfmust integrate to a fixed constant. 

2. FORMULATION FOR A CLASS OF INTEGRAL EQUATIONS 

Let us now specify a class of operators A, the spaces F and G, and the constraint 
set M of a fairly general nature. Most of the inverse problems listed in Section 1 
fall in this category. Consider a Fredholm integral equation of the first kind in n 
variables, $ = (x1 ,..., x,) 

I e4 5)f(R 4 = gm D 
where D is a finite domain. 

In the problems of interest to us, physical considerations impose nonnegativity 
of the solution, i.e., 

f(Q 2 0, 4ED (4) 

as well as boundedness conditions on the solution, data, and the kernel; as given by 

and 
s D [f(i)]” dS < co, s, [g(f)]” di < OD 

ss [K(G, $)I2 dc+ d$ < co. 
D D 

From these, it follows that the complete metric spaces F and G can be identified as 
L,(D) and the constraint set M is defined by Eq. (4). 

A quasi-solution to the problem of inverting Eq. (3) subject to the nonnegativity 
constraint is 

(7) 
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and the norm II . /I is the usual L, norm. For numerical computation the minimization 
problem in Eq. (7) has to be converted into a problem in finite-dimensional (Euclidean) 
space. 

The discretization is accomplished by considering f and g at a finite set of points 
in D and approximating the integrand in Eq. (3) by a suitable quadrature rule (e.g., 
trapezoidal rule). Thus, Eq. (3) is replaced by a system of algebraic equations 

A-3 = i. (8) 

The validity of this process depends on these two approximations and it will be 
assumed that these approximations are adequate. Attention will be devoted to solving 
this linear algebraic system. Corresponding to Eq. (2), we have for the quasi-solution 

(9) 

The problem of two-dimensional object restoration from a noisy image, for example, 
can be cast into the exact format of the problem posed in this section with the identi- 
fications: f(s) = object intensity distribution, g(i) = image intensity distribution, 
I@, 9) = point spread function of optical system. The domain D is the field of cer- 
tainty (where the unknown object is known to be a priori). 

In the next section we describe an algorithm to solve Eq. (9) via recursive norm 
minimization. 

3. INVERSION ALGORITHM 

Let us define the error function 4 

$43) = B(&Y - a3>+<i - A3) 

and its gradient $I with respect tof 

J(3) 55 v+(f) = &A3 - j). 

(10) 

(11) 

The minimization problem of Section 2 can be written compactly as 

Anyfwhich is nonnegative is said to be a feasible solution and the set 

O.I EZ {x: x E RN, x 3 0) (13) 

is called the feasible set. The nonlinear programming algorithm starts at a point in 
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the feasible set and proceeds iteratively to an optimal solution, for Eq. (9) within 
the feasible set. 

Consider the recursion relation 

for i = I ,..., N. It can be shown that [8] 

a. A necessary condition for a relative minimum at f tk) is 

(z/P), d(k)) > 0 

(14) 

(15) 

(16) 

where (., .) denotes the usual scalar product; 

b. &lc) = 0 only if f’“) satisfies condition (a); 

C. there exists an cll > 0 such that for 0 < atk) < Cu 

$[3’k) + dk+i’k)] < c#[f’Jq. (17) 

The equality being satisfied only when condition (a) is satisfied. 
A recursion similar to Eq. (14) was considered by Ho and Kashyap [9, lo]. d(k) as 

given above in Eq. (15) is a feasible search direction. From condition (c) above it is 
clear that we can make a reduction in the error-function 4 by proceeding in the &) 
direction by a suitable step ack), as long as we are not at a relative minimum. Thus, 
d(“J is a descent direction. The problem now is to determine ack) which gives the optimal 
reduction without violating feasibility. 

4. COMPUTATION OF STEP-SIZE PARAMETER dk) 

The optimal step-size & without any restriction such as f ~+l) E w, will be obtained 
by solving the minimization problem (involving one-dimensional search), 

Inn $[f’” + a&)]. (18) 

Let a! be the solution to Eq. (18). This E, however, does not guarantee feasibility, 
that is, it is quite possible that 

3’“’ + &‘k, < (j. 
(1% 



A CLASS OF INVBRSE PROBLEMS 

It is easy to see that a step-size 01 should not be greater than 

mint-(fi(‘c)1@?], 
i = 1, 2 )..., N. 

p < a. 

From Eqs. (19) and (20) the optimal step-size is given by 
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OI(~) = min{ol, [-(fik’/@‘)]}, 
i = 1, 2 )...) N. (21) 

p < a. 

Computation of G involves finding the positive root of the equation 

where 
/j(a) cxz ,p+‘), J(k)) = 0 (22) 

@Kfl) = q[f'"' + &4] (23) 

The determination of the roots of Eq. (22) is accomplished via the method of false 
position. 

Astopping rule for the recursion, Eq. (14), is based on condition (a) of Section 3 
and the Aitken a2-procedure which is given by the following rule. Stop if 

I Wk)l - 4*rP11 < E, (24) 

where E is a suitable tolerance, and 

4*P’l = 24 
[pc,]2 -+p-,, . ;m+l~ 

(Ic) _ W-1) _ Wfl) ' (25) 

p f #p]* (26) 

The algorithm of this paper does not incorporate any smoothing, and the results 
obtained still compare favorably with other methods (see next section). In case there 
is a ridge-type minimum or a broad valley for 4 in Eq. (lo), smoothing would help 
avoid oscillations in the iterative process and give better convergence. This involves 
replacing the minimization problem of Eq. (12) by a modified minimization problem 

(12’) 

where 

5443) = !A6 - a3>+ct - a31 + fl3+3 (103 

and /3 > 0 is a small smoothing parameter. The new gradient is now 

&B(P) = %3(P) = A+@3 - 1) + 2/v. (11’) 
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The algorithm is the same as before. One obvious way of determining /3 is to run some 
trials with known functions of fi There are some clues as to more systematic ways 
of determining the optimal smoothing parameter /I and even the best discretization. 
These are the subject of future publications. 

4. NUMERICAL EXAMPLE 

In the interest of illustrating the main ideas unencumbered by geometrical compli- 
cations, we consider a one-dimensional problem of object reconstruction for a slit 
aperture operating in incoherent illumination. 

The object is a one-dimensional unit pulse of half-width x0 imaged by an aberration- 
free aperture 

f(x> = 0, -m<x<-x,+6, 
= 1, -xo+6<x<x,+S, (27) 
zzz 0, x,+s<x<co, 

where 6 is the shift from center. Note that the object is always taken to lie within the 
interval of certainty, i.e., 

[-x0 + S, x0 + 61 D = i-Q Ql (28) 

where 52 is given. 
The kernel function is given by [1 1] 

K(x,y) = K(x - y) = ; ?$--;“1”. 

The image g(x) is given by 

(29 

(30) 

The integral can be expressed in terms of the sine integral, but we found it more 
convenient to evaluate the integral numerically. 

The integral equation was discretized via a trapezoidal rule. We chose to make the 
number of sampled points in the image equal to the number of reconstruction points 
in the object for these illustrative calculations. 

Noise was introduced into the image in a multiplicative fashion. We set 
A gnoisy = (1 + b-4 Aloiseless (30 

where p is a random variable uniformly distributed over (-A&, 4) and k is a positive 
constant less than unity. Values of k used in the present calculations are k = 0.10 
and 0.20, loosely described as 10 and 20 % noise. 
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FIG. 1. Object reconstruction for image subject to 10 % noise. - original object, l reconstructed 
values for first sample realization, 0 reconstructed values for second sample realization. 

-15 -10 -5 0 5 10 15 
NORMALIZED DISTANCE 

FIG. 2. Object reconstruction for image subject to 20 % noise. - original object, l reconstructed 
values for first sample realization, 0 reconstructed values for second sample realization. 

NORMALIZED DISTANCE 

1 

!- 
FIG. 3. Object reconstruction for image subject to 10 % noise. - original object, l reconstructed 

values for a sample realization. 
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As a first example, an object of half width x0 = 10 centered at x = 0 (i.e., 6 = 0) 
was considered and the fundamental interval taken to be Q = 15. The image was 
evaluated via Eq. (30) and then corrupted by 10 and 20 ‘A noise, respectively. Nume- 
rical results are summarized in Figs. 1 and 2 for two sample realizations of the image. 
The reconstructed object comprises a set of 31 data points which are connected by 
strighet line segments. 

In Fig. 3, we show the reconstruction of an asymmetrically placed object (x0 = 4, 
6 = 2, D = 10) for an image corrupted by 10 % noise. 

The constraints expressed by Eqs. (4)-(6) imply that the metric spaces F and G 
be identified as L,(D) z L,(s2). This means that we cannot expect the reconstructed 
object to match the original object on a pointwise basis, since we are only requiring 
that the normed difference be a minimum. Thus, even when the image is essentially 
noiseless, in the sense that it is known to four-six digits, we cannot expect perfect 
reconstruction on a pointwise basis. The fact that the object is discontinuous is a 
further complication and makes the bar target object a severe test of the inversion 
algorithm. Figure 4 shows the reconstruction of the same object as in Figs. 1 and 2 

NORMALIZED DISTANCE 

FIG. 4. Object reconstruction for “noiseless” image. - original object, l reconstructed values. 

for a “noiseless” image. These results should be compared with those of Barakat 
and Blackman [12], who employed Tichonov regularization, for the same problem. 
The present results are superior since they are guaranteed to be nonnegative whereas 
Tichonov regularization does not possess this feature. 

A brief note on the actual iterative process is in order. The iterations proceed by 
reducing the error function q5 defined in Eq. (10). The starting point used for all 
iterations is the vectorp = 0. A value of I$ = 0.002 is used as a threshold at which the 
recursion is terminated. Other thresholds based on the norm of the descent direction 
vector and the Aitken S2-procedure have also been incorporated. 
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